Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
Documentation
Project
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Rachael Hu
Documentation
Commits
27c33844
Commit
27c33844
authored
Aug 12, 2015
by
Tom Laudeman
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
edits
parent
fa45615b
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
28 additions
and
18 deletions
+28
-18
Vocabulary-properties-and-ontologies.md
Vocabulary-properties-and-ontologies.md
+28
-18
No files found.
Vocabulary-properties-and-ontologies.md
View file @
27c33844
...
...
@@ -9,9 +9,13 @@ An ontology is a heirarchy of controlled vocabulary terms that explicitly encode
Using the example of subject (aka "topical subject"), either technology allows us to make assertions about the
data and relations between identities.
-
Both technologies can be used simultaneously to describe identities, however, doing double data entry would
be irksome.
-
Ontolgies allow explict assertions, and stronger assertions
-
Both technologies are weak if a subject is missing, that is, the identity was not marked up (to use XML-speak)
-
Both technologies are weak if a subject is missing, that is, the identity was not marked up (to use
XML-speak; in fact we are using a database and creating relational links)
-
More extensive is better, but the extent of ontology or vocabulary is limited by resources
...
...
@@ -19,8 +23,8 @@ data and relations between identities.
-
Flat vocabularies are less difficult to create and maintain (perhaps much less difficult)
-
Both
vocabularies have an implicit definition for each term; however, two different editors may understand
somewhat different implied defintions
-
Both
technologies have an implicit definition for each term; however, two different humans (editors,
s
cholars) may understand s
omewhat different implied defintions
-
A single explicit definition can be added to each term (although I haven't seen this; it may only exist in
fields outside the archival world)
...
...
@@ -31,13 +35,17 @@ data and relations between identities.
-
An ontology requires at least 2 database tables, perhaps 3
-
Policies need to be developed for create, update, and delete
-
Policies need to be developed for create, update, and delete
of terms in either technology
-
Policy complexity is greater for an ontology
-
Using computers, an identity may have multiple subjects of either ontology, or flat vocabulary
It might also be sensible to design the properties with multilingual vocabulary terms. By multilingual I mean:
-
Building either technology can (and almost certainly) will be an on-going process. We don't have to start
with a fully mature vocabulary. That said, records edited early in the life of the data will be somewhat
less-well-marked-up than records marked up later.
It might also be sensible to design the terms with multilingual vocabulary terms. By multilingual I mean:
multiple terms for each unique ID where each term is specific to a specific language, and all terms with the
same ID share a definition.
...
...
@@ -48,7 +56,7 @@ The flat vocabulary has a single "type" for each term, where type examples are:
function, etc. In an ontology, the "type" is handled by the ontology structure, which is explicit, but
discovering the type requires tree-traversal.
###
Property
domain
###
Term
domain
Intellectually each property has a definition. Technically, dding an explicit definition only required an
...
...
@@ -57,22 +65,22 @@ intellectually. The Wikipedia clarifies this issue since ambiguous terms lead to
page. Wikipedia "definition" is the article.
### Proper entities are not
propertie
s
### Proper entities are not
term
s
There is no
property
"detroit", although there is a CPF entity for "Detroit, MI USA", complete with a field
There is no
term
"detroit", although there is a CPF entity for "Detroit, MI USA", complete with a field
for the corresponding geonames ID. It is technically possible to conflate CPF entities in the user interface
to enable the construction of a topical subject "detroit", although that intellectually sub-optimal. The data
should be as well-constructed as possible. A search for subject + place is not a search for subject +
subject(placename).
Consider what happens if (and I'm opposed to this) all CPF entities were imported into the
property
Consider what happens if (and I'm opposed to this) all CPF entities were imported into the
term
table. That would be denormalization, data duplication, and would only end in tears.
### Use Markov models instead of an ontology
Ontologies are difficult to create, and there is disagreement about them, both in structure and content. There
are several to choose from, the the
properties they use are somewhat incomplete as
confusing. Linking (aka
are several to choose from, the the
terms they use are somewhat incomplete and
confusing. Linking (aka
markup of) each aspect of an identity record's properties to the ontology is an onerous task, and fraught with
several types of errors. Linking is often a judgement call.
...
...
@@ -80,7 +88,7 @@ A technology exists that is easy to implement, powerful, and tractable in real l
vocabularies.
We can create a Markov matrices of the terms. Multiplying Markov matrices causes them to converge which
reveals
property
relatedness as exists in the data. The effect is quite powerful and (almost?) obviates the
reveals
term
relatedness as exists in the data. The effect is quite powerful and (almost?) obviates the
need for a hand-created ontology. Missing relations (known to exist, but not discovered by the Markov
convergence because no records actually contain the desired relation) are easily rectified by either of two
methods. The first would be to add the correct relations to existing records. The second works by creating
...
...
@@ -97,7 +105,7 @@ http://www.youtube.com/watch?v=WHeta_YZ0oE
http://www.youtube.com/watch?v=x3wOhXsjPYM
### Ontology uses
property
, but is a separate problem
### Ontology uses
terms
, but is a separate problem
The alternative to the Markov relation discovery is an ontology that relates terms both in relatedness,
and as a hierarchy from broad to narrow. There are existing ontologies with varying levels of detail.
...
...
@@ -113,7 +121,7 @@ Painting subject:Automobiles subject:Painting (fine art)
```
The underlying terms are the same in both. However, the ontological relationship is quite different
because one is a corporate body, and the other is an art object. It is not the domain of a flat
property
to
because one is a corporate body, and the other is an art object. It is not the domain of a flat
term
to
know how it is applied to a database record. Also, the larger context of what is being described changes how
the description is perceived. In any case, the use of a flat vocabulary is sufficient for search and discovery, and
Markov matrices can discover relatednesss between records. Hierarchy becomes another type of relatedness. In
...
...
@@ -123,17 +131,19 @@ identities in the database with both "Automobiles" and "Engineering" as subjects
The example above is limited to terms as topical subject. It seems reasonable to add fields in order to apply
additional terms (beyond "topical subject") "typeOf" or "isA", while still using the same (original, large)
list of terms. Types of "publisher (corporateBody)" and "painting (object)" seem obvious. Applying both
property
and type pairs will explicitly categorize any database record, even without using an
term
and type pairs will explicitly categorize any database record, even without using an
ontology. However, it is unclear how this somewhat loosely coupled description will impact being able to
reason about database records. This also requires adding fields to the CPF database schema, which carries
serious baggage.
### Ontology and
property
interact to create search facets
### Ontology and
term
interact to create search facets
In general, a search for a parent property should include all child properties as specified by the
ontology. Searching for the Spanish term "ropa" (clothes) will include "cinturon" (belt) which has the English
term "belt (clothing)". This works well as long as the ontology is complete.
In general, a search for a parent term should include all child terms as specified by the ontology. A
multilingual example would be searching for the Spanish term "ropa" (clothes) will include "cinturon" (belt)
which has the English term "belt (clothing)". This works well as long as the ontology is complete. Note that
being a controlled vocablulary, the Spanish "ropa" has the dsame ID as English "clothes", and the search is
performed based on ID number, not text string.
Interestingly, we might be able to apply Markov matrices to identities marked up via ontology, with the same
sort of relatedness building that occurs with a flat vocabulary list.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment